MASS SPECTRUM OF THE FLAVANONE NARINGENINE

L.Dolejš

Institute of Organic Chemistry and Biochemistry,
Czechoslovak Academy of Sciences, 166 IO Prague 6

Using the example of naringenine, a new fragmentation process in phenolic flavanones is discussed.

Little attention has been paid in mass spectrometric investigations of fragmentations of flavanones to the compounds containing free phenolic groups ${ }^{1-4}$. In our study of the mass spectrum of naringenine (I, Fig. 1) we observed, besides the earlier described types of fragment ions (Scheme 1), an abundant fragment a of mass

Scheme 1
166.0264, corresponding to the composition $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$ (166.0266). The ion a was formed from the ionized molecule by the elimination of the neutral particle $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$ in a process which required breaking two bonds on the same carbon atom. For its formation the presence of a free phenolic group in the position 4^{\prime} is necessary: in O -methyl derivatives of flavanones ions of the type a do not occur. The split neutral

a

b

c
particle does not have the carbene structure; the process would not be hindered by the etherification of the phenolic group. Therefore, the neutral particle has to be formulated as chinonemethide b or as tropolone c. A shift of the phenolic hydrogen into the aromatic ring or even into the benzylic-position has to be assumed.

Fig. 1
Mass Spectrum of Naringerine

REFERENCES

1. Drewes S. E.: Progr. Mass Spectrom. 2 (1973).
2. Audier H.: Bull, Soc. Chim. Fr. 1966, 2892.
3. Pelter A., Stainton P., Barber M.: Heterocyclic Chem. 2, 262 (1965).
4. Barnes C. S., Occolowitz J. L.: Aust. J. Chem. 17, 975 (1964).
[^0]
[^0]: Translated by Z. Herman.

